Key Terms:

<table>
<thead>
<tr>
<th>Term</th>
<th>Term</th>
<th>Term</th>
<th>Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetic Drift</td>
<td>Adaptive Evolution</td>
<td>Directional Selection</td>
<td>Balancing Selection</td>
</tr>
<tr>
<td>Founder Effect</td>
<td>Gene Flow</td>
<td>Disruptive Selection</td>
<td>Heterozygote Advantage</td>
</tr>
<tr>
<td>Bottleneck Effect</td>
<td>Relative Fitness</td>
<td>Stabilizing Selection</td>
<td>Frequency-Dependent Selection</td>
</tr>
<tr>
<td>Sexual Dimorphism</td>
<td>Gamete</td>
<td>Genetic Diversity</td>
<td>Neutral Variation</td>
</tr>
<tr>
<td>Intrasexual Selection</td>
<td>Intersexual Selection</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Key Questions:

- Why is natural selection easier to predict than genetic drift?
- Why is “survival of the fittest” not a great description of evolution?
- Why do harmful, disease-causing alleles still exist in the human population?

Lecture Outline:

So what happens when H-W conditions are NOT met? evolution!

Natural Selection - difference in reproduction, which typically implies survival
 leads to adaptive evolution – a species that fits better with it’s environment
 of course the environment changes too

Genetic Drift - differences in allele frequencies due to chance
 amplified in small populations; can have really be effects on allele frequencies
 Founder Effect
 Bottleneck Effect

Gene Flow - adding or removing alleles from the population

Relative Fitness describes how much an individual contributes to the gene pool in the next generation
 reflective of the match between an individual and it’s environment relative to the others

Natural selection can affect the population in three main ways:
 Directional selection - current conditions favor one extreme of a phenotype
 Disruptive selection - disfavors the moderate phenotype and favors either extreme
 Stabilizing selection - favors the moderate phenotype over either extreme

Adaptive Evolution improves the fit between organism and the current environment
 drift and gene flow will alter the allele frequencies but may or may not improve fitness

Sexual selection – focuses specifically on obtaining mates, not just survival
 often leads to sexual dimorphism
 intrasexual selection – one sex competes for a limited mate.
 intersexual selection – one sex chooses to mate with the most fit

Why is genetic diversity preserved?
 one reason is diploidy. allows recessive allele to “hide”

Balancing selection – natural selection maintains two or more alleles as advantageous
 Heterozygote advantage
 Frequency-Dependent Selection

Neutral Variation – many changes have essentially no contribution to fitness
 at least in the current environment